Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods

نویسندگان

  • Mubarak J. Al-Saadi
  • Salim H. Al-Harthi
  • Htet H. Kyaw
  • Myo T.Z. Myint
  • Tanujjal Bora
  • Karthik Laxman
  • Ashraf Al-Hinai
  • Joydeep Dutta
چکیده

We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV (~1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis

Cobalt oxide (Co3O4) nanorods were prepared by a simple co-precipitation method using ethanol solution of cobalt nitrate as precursor and cetyl trimethylammonium bromide (CTAB) as surfactant. Morphological properties of the nanoparticles were characterized. XRD measurement exhibited the structure of Co3O4 nanocrystals for annealed samples. The SEM ima...

متن کامل

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

Hydrothermally grown ZnO nanorods have inherent crystalline defects primarily due to oxygen vacancies that enhance optical absorption in the visible spectrum, opening up possibilities for visible light photocatalysis. Comparison of photocatalytic activity of ZnO nanorods and nanoparticle films on a test contaminant methylene blue with visible light irradiation at 72 kilolux (klx) showed that Zn...

متن کامل

Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods

Aligned ZnO/ZnSe core/shell nanorods (NRs) with type-II energy band alignment were fabricated by pulsed laser deposition of ZnSe on the surfaces of hydrothermally grown ZnO NRs. The obtained ZnO/ZnSe core/shell NRs are composed of wurtzite ZnO cores and zinc blende ZnSe shells. The bare ZnO NRs are capable of emitting strong ultraviolet (UV) near band edge (NBE) emission at 325-nm light excitat...

متن کامل

Synthesis and structural properties of Mn-doped ZnO/Graphene nanocomposite

Zinc oxide (ZnO) is a promising metal oxide semiconductor with various applications, especially in the photocatalytic destruction of environmental pollutants. However, this nanoparticle has some limitations, such as poor dispersion, aggregation, and a wide energy gap. As such, the doping of metal oxide semiconductor has been strongly recommended. Addition of manganese (Mn) has proven effective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017